DNA methyltransferases, or DNMTs, catalyze DNA methylation by adding methyl groups to the 5-carbon position of the cytosine ring, resulting in 5-methylcytosine. The various types of DNMTs are responsible for the maintenance and establishment of DNA methylation patterns. The ten-eleven translocation, or TET, family of 5-mC hydroxylase enzymes including TET1 are responsible for oxidizing 5-methylcytosine into 5-hydroxymethylcytosine. Measuring DNMT and TET amounts, activity, and inhibition levels will allow us to better understand the relationships between cytosine, 5-methylcytosine, and 5-hydroxymethylcytosine as part of the DNA methylation and DNA demethylation cycle. This in turn can help us start to better understand and use these findings to find and fight epigenetic diseases.